Scientists map likely impact of coronavirus via computer models – The Japan Times

As the novel coronavirus spreads around the world, scientists are using the latest computer-modeling techniques to predict its effects, from the eventual number of cases and deaths to the peak of the outbreak.

Recent decades have seen the power of new computer processors combine with ever-more-sophisticated mathematical models to give health authorities a far better idea of how far and fast diseases are likely to spread.

Despite an inevitable margin of error, scientists are now able to predict the path the novel coronavirus will take.

France’s health minister, Agnes Buzyn, said Friday that she had held telephone talks with her G7 counterparts to expedite modeling of the disease’s eventual spread and severity.

Models are built in a compound manner, taking into account data of the virus’s known history — transmission, mortality and recovery rates — as well as human behavior trends, such as air traffic patterns.

But it is not enough to be sophisticated — the best models are also adaptable.

“It’s a trade-off: The more you refine the model, the harder it is to manipulate it, and it opens the door to a wide margin of error,” said Arnaud Banos of France’s National Center for Scientific Research.

To adapt in real time to outbreak developments, researchers carry out simulations by inserting new data as it emerges.

“This might be the appearance of a new epidemic hot spot or a new public health measure that the model couldn’t have foreseen,” Banos said.

A British team at the London School of Hygiene and Tropical Medicine used computer modeling this past week to estimate that the peak of the outbreak in the virus’s epicenter, the Chinese city of Wuhan, could come from now to late February.

“There is of course a lot of uncertainty in exactly when this will occur and how big it might be,” said team member Adam Kucharski.

Rowland Kao, professor of veterinary epidemiology and data science at the University of Edinburgh, cautiously welcomed the results. “This is an analysis by an experienced and talented team, but as always the limitations of the available data will affect their predictions,” he said.

A separate study published at the beginning of February had modeled that at least 75,000 people were infected in Wuhan.

Some models compiled at the beginning of outbreaks turn out have erroneous results due to the relative lack of data upon which to base them.

This was the case with the BSE outbreak in Britain in the 1990s.

“Some models issued by reputable research groups said there would be as many as 136,000 cases,” said the Institut Pasteur’s Arnaud Fontanet.

“These uncertainties were largely based on assumptions concerning the diseases’ incubation period.”

In total, 177 people contracted the disease.

But computer models have come a long way in 20 years and are increasingly benefiting from input from artificial intelligence.

According to Banos, this allows scientists to pick up on what are termed “weak signals” that could prove crucial in determining the accuracy of models.

“These could be individual exchanges on social media discussing symptoms,” he said.

“The idea is to permanently collect mass amounts of data so that weak signals are automatically picked up and related to the evolution of the disease,” Banos added.

Leave a Reply

Your email address will not be published. Required fields are marked *

Copyright 2020